1. Дана функция \(f(x) = \frac{9}{2e^x} + \frac{e^x}{2} + m, \: m\) - параметр.
а) Найдите область определения функции.
в) Найдите \(m,\) если известно что график функции проходит через точку начала координат.
с) Найдите координаты второй точки пересечения графика функции с осью \(x\).
d) Найдите координаты точек экстремума и области возрастания и убывания функции.
е) Начертите схематический график функции.
f) Начертите схематические графики функций \(g(x)=-f(x),\:h(x)=2f(x)\).
g) Сравните площади фигур, заключенных между графиком каждой из функций \(f(x),\: g(x),\:h(x)\) и осью \(x.\)
2. Дана функция \(f(x) = x^2e^{-x^2}.\)
а) Найдите координаты точки пересечения графика функции с осью \(x.\)
в) Найдите координаты точек экстремума и определите их тип.
с) Найдите области возрастания и убывания функции \(f(x)\).
d) Начертите схематический график функции \(f(x)\).
е) Начертите схематический график функции \(g(x) = -3f(x)\) в той же системе координат.
f) Во сколько раз площадь фигуры, заключенной между графиком функции \(g(x),\) осью \(x\) и прямой \(x=2,\) больше площади фигуры, заключенной между графиком функции \(f(x),\) осью \(x\) и прямой \(x = 2?\)
3. Дана функция \(f(x) = (3-2x)\cdot e^{2x} \)
а) Найдите область определения функции.
в) Найдите координаты точек пересечения графика функции с осями координат.
с) Найдите координаты точки экстремума и определите ее тип.
d) Найдите области возрастания и убывания функции \(f(x)\).
е) Начертите схематический график функции \(f(x)\).
f) Найдите координаты точки экстремума функции \(g(x)=-2f(x)-1,\) и определите ее тип.
g) Начертите схематический график функции \(g(x)\).
4. Дана функция \(f(x) = \frac{m\cdot e^x}{2e^x-m}, \: m > 0 - \) параметр.
а) Найдите область определения функции \(f(x)\) и уравнение вертикальной асимптоты.
в) Найдите координаты точек пересечения графика функции с осями координат.
с) Найдите области убывания функции \(f(x).\)
d) Найдите \(m,\) если известно, что график функции пересекает ось \(y\) в точке \((0,-2).\)
е) Найдите горизонтальные асимптоты функции.
f) Начертите схематический график функции \(f(x)\).
g) Найдите координаты точек пересечения графика функции \(g(x)=|f(x)|\) с осью \(y.\)
5. Дана функция \(f(x) = 3^{-\sqrt{x}}.\)
а) Найдите область определения функции.
в) Найдите координаты точки пересечения графика функции с осью \(y.\)
с) Возрастает или убывает функция \(f(x)\) в области, в которой она определена?
d) Начертите схематический график функции \(f(x)\).
е) Найдите уравнение вертикальной асимптоты функции \(f'(x)\).
‹ ›